
In a nutshell: The finite-difference method 
for linear ordinary differential equations 

Given a second order linear ordinary differential equation with constant coefficients 

a2(x)u(2)(x) + a1(x)u(1)(x) + a0(x)u (x) = g(x), 

two spatial boundary points [a, b] and two boundary values u(a) = ua and u(b) = ub. 

Parameters: 

 n The number of sub-intervals into which [a, b] will be divided. 
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2. For k going from 1 to n – 1, assign the following:  
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3. Create and solve the system of n – 1 linear equations in n – 1 unknowns 
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Note that most of the entries in the matrix will be different and are dependent on x. 

4. The approximation of u(xk) is uk for k = 1, …, n – 1 and u(x0) = u(a) = ua and u(xn) = u(b) = ub 


