In a nutshell: The finite-difference method for linear ordinary differential equations

Given a second order linear ordinary differential equation with constant coefficients

$$
a_{2}(x) u^{(2)}(x)+a_{1}(x) u^{(1)}(x)+a_{0}(x) u(x)=g(x)
$$

two spatial boundary points $[a, b]$ and two boundary values $u(a)=u_{a}$ and $u(b)=u_{b}$.
Parameters:
$n \quad$ The number of sub-intervals into which $[a, b]$ will be divided.

1. Set $h \leftarrow \frac{b-a}{n}$ and $x_{k} \leftarrow a+k h$ noting that $x_{n}=b$.
2. For k going from 1 to $n-1$, assign the following:

$$
\begin{aligned}
p_{k} & \leftarrow 2 a_{2}\left(x_{k}\right)-a_{1}\left(x_{k}\right) h \\
q_{k} & \leftarrow-4 a_{2}\left(x_{k}\right)+2 a_{0}\left(x_{k}\right) h^{2} \\
r_{k} & \leftarrow 2 a_{2}\left(x_{k}\right)+a_{1}\left(x_{k}\right) h
\end{aligned}
$$

3. Create and solve the system of $n-1$ linear equations in $n-1$ unknowns

$$
\left(\begin{array}{ccccccc}
q_{1} & r_{1} & & & & & \\
p_{2} & q_{2} & r_{2} & & & & \\
& p_{3} & q_{3} & r_{3} & & & \\
& & p_{4} & q_{4} & r_{4} & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & p_{n-2} & q_{n-2} & r_{n-2} \\
& & & & & p_{n-1} & q_{n-1}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{array}\right)=\left(\begin{array}{l}
2 g\left(x_{1}\right) h^{2}-p_{1} u_{a} \\
2 g\left(x_{2}\right) h^{2} \\
2 g\left(x_{3}\right) h^{2} \\
2 g\left(x_{4}\right) h^{2} \\
\vdots \\
2 g\left(x_{n-2}\right) h^{2} \\
2 g\left(x_{n-1}\right) h^{2}-r_{n-1} u_{b}
\end{array}\right)
$$

Note that most of the entries in the matrix will be different and are dependent on x.
4. The approximation of $u\left(x_{k}\right)$ is u_{k} for $k=1, \ldots, n-1$ and $u\left(x_{0}\right)=u(a)=u_{a}$ and $u\left(x_{n}\right)=u(b)=u_{b}$

